Nonhomogeneous semigroups of measures on compact Lie groups
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 640-657

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of probability measures $\{P_{uv}\}$, $a\leq u\leq v\leq b$, on a group $G$ is called a non-homogeneous semi-group if (i) $P_{uv}P_{uw}=P_{uw}$; (ii) $P_{t,t+\Delta}\to\delta (e)$ weakly ($\delta (e)$ is the degenerate distribution concentrated at the identity element of $G$); (iii) $P_{tt}=\delta (e)$, $a\leq t\leq b$. Semi-groups generate stochastically continuous processes with independent increments on $G$ and vice versa. In the paper, it is proved that for the existence (at each point $t$, $a\leq t\leq b$) of the generator of $P_{t,t+\Delta}$ ($\Delta\to 0$) on $C_2$ it is necessary and sufficient that the Fourier coefficients of measures $P_{uv}$ be continuously differentiable in $u$ and $v$. The generator is then a Hant operator.
@article{TVP_1972_17_4_a2,
     author = {V. M. Maksimov},
     title = {Nonhomogeneous semigroups of measures on compact {Lie} groups},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {640--657},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a2/}
}
TY  - JOUR
AU  - V. M. Maksimov
TI  - Nonhomogeneous semigroups of measures on compact Lie groups
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1972
SP  - 640
EP  - 657
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a2/
LA  - ru
ID  - TVP_1972_17_4_a2
ER  - 
%0 Journal Article
%A V. M. Maksimov
%T Nonhomogeneous semigroups of measures on compact Lie groups
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1972
%P 640-657
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a2/
%G ru
%F TVP_1972_17_4_a2
V. M. Maksimov. Nonhomogeneous semigroups of measures on compact Lie groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 640-657. http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a2/