Nonhomogeneous semigroups of measures on compact Lie groups
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 640-657
Voir la notice de l'article provenant de la source Math-Net.Ru
A system of probability measures $\{P_{uv}\}$, $a\leq u\leq v\leq b$, on a group $G$ is called a non-homogeneous semi-group if
(i) $P_{uv}P_{uw}=P_{uw}$;
(ii) $P_{t,t+\Delta}\to\delta (e)$ weakly ($\delta (e)$ is the degenerate distribution concentrated at the identity element of $G$);
(iii) $P_{tt}=\delta (e)$, $a\leq t\leq b$.
Semi-groups generate stochastically continuous processes with independent increments on $G$ and vice versa.
In the paper, it is proved that for the existence (at each point $t$, $a\leq t\leq b$) of the generator of $P_{t,t+\Delta}$ ($\Delta\to 0$) on $C_2$ it is necessary and sufficient that the Fourier coefficients of measures $P_{uv}$ be continuously differentiable in $u$ and $v$. The generator is then a Hant operator.
@article{TVP_1972_17_4_a2,
author = {V. M. Maksimov},
title = {Nonhomogeneous semigroups of measures on compact {Lie} groups},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {640--657},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a2/}
}
V. M. Maksimov. Nonhomogeneous semigroups of measures on compact Lie groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 640-657. http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a2/