On an identity for stochastic integrals
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 761-765
Voir la notice de l'article provenant de la source Math-Net.Ru
A sufficient condition is obtained for the identity
$$
\mathbf{M}\exp\biggl\{\int_0^T f(t,\omega)\,dw(t)-\frac12\int_0^T f^2(t,\omega)\,dt\biggr\}=1
$$
to hold. (Here $\int_0^T f(t,\omega)\,dw(t)$ is the stochastic integral with respect to a Wiener process $w(t)$.) This condition is shown to be close to a necessary one.
@article{TVP_1972_17_4_a16,
author = {A. A. Novikov},
title = {On an identity for stochastic integrals},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {761--765},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a16/}
}
A. A. Novikov. On an identity for stochastic integrals. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 761-765. http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a16/