On a transformation of systems of stochastic differential equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 748-751

Voir la notice de l'article provenant de la source Math-Net.Ru

For a diffusion Markov process defined by the Ito equations (1), an $\mathfrak{F}_t$-measurable transformation defined by (3) or (4) with $G(z,t)$ and $F(x,t)$ satisfying (2) and (6) respectively is considered. The process $(z(t), y(t))$ where $z(t)=F(x(t), t)$ with $(x(t), y(t))$ defined by (1) is shown to satisfy the system (5).
@article{TVP_1972_17_4_a13,
     author = {V. A. Lebedev},
     title = {On a transformation of systems of stochastic differential equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {748--751},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a13/}
}
TY  - JOUR
AU  - V. A. Lebedev
TI  - On a transformation of systems of stochastic differential equations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1972
SP  - 748
EP  - 751
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a13/
LA  - ru
ID  - TVP_1972_17_4_a13
ER  - 
%0 Journal Article
%A V. A. Lebedev
%T On a transformation of systems of stochastic differential equations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1972
%P 748-751
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a13/
%G ru
%F TVP_1972_17_4_a13
V. A. Lebedev. On a transformation of systems of stochastic differential equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 748-751. http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a13/