Diffusion processes and differential equations degenerating at certain points
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 738-743
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper gives a complete description of all bounded solutions of the first boundary problem for the operator $$ L=\frac{1}{2}\sum_{i,j=1}^n a^{ij}(x)\frac{\partial^2}{\partial x^i\partial x^j}+\sum_{i=1}^{n}b^i \frac{\partial}{\partial x^i} $$ degenerating at certain points.
@article{TVP_1972_17_4_a11,
author = {V. V. Sarafyan},
title = {Diffusion processes and differential equations degenerating at certain points},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {738--743},
year = {1972},
volume = {17},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a11/}
}
V. V. Sarafyan. Diffusion processes and differential equations degenerating at certain points. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 738-743. http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a11/