Diffusion processes and differential equations degenerating at certain points
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 738-743
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper gives a complete description of all bounded solutions of the first boundary problem for the operator
$$
L=\frac{1}{2}\sum_{i,j=1}^n a^{ij}(x)\frac{\partial^2}{\partial x^i\partial x^j}+\sum_{i=1}^{n}b^i \frac{\partial}{\partial x^i}
$$
degenerating at certain points.
			
            
            
            
          
        
      @article{TVP_1972_17_4_a11,
     author = {V. V. Sarafyan},
     title = {Diffusion processes and differential equations degenerating at certain points},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {738--743},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a11/}
}
                      
                      
                    TY - JOUR AU - V. V. Sarafyan TI - Diffusion processes and differential equations degenerating at certain points JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1972 SP - 738 EP - 743 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a11/ LA - ru ID - TVP_1972_17_4_a11 ER -
V. V. Sarafyan. Diffusion processes and differential equations degenerating at certain points. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 738-743. http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a11/
