Gibbs state describing coexistence of phases for a three-dimensional Ising model
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 619-639
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a three-dimensional Ising model with critical value of chemical potential and sufficiently small temperature. We prove the existence of an infinite set of different Gibbsian states in infinite volume. All these states are not translation invariant. Physically, they correspond to the situation where there are simultaneously two phases and their bound fluctuates near some plane. The states of such a type are impossible in the two-dimensional case.
@article{TVP_1972_17_4_a1,
author = {R. L. Dobrushin},
title = {Gibbs state describing coexistence of phases for a three-dimensional {Ising} model},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {619--639},
year = {1972},
volume = {17},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a1/}
}
R. L. Dobrushin. Gibbs state describing coexistence of phases for a three-dimensional Ising model. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 619-639. http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a1/