Gibbs state describing coexistence of phases for a three-dimensional Ising model
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 619-639
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a three-dimensional Ising model with critical value of chemical potential and sufficiently small temperature. We prove the existence of an infinite set of different Gibbsian states in infinite volume. All these states are not translation invariant. Physically, they correspond to the situation where there are simultaneously two phases and their bound fluctuates near some plane. The states of such a type are impossible in the two-dimensional case.
@article{TVP_1972_17_4_a1,
author = {R. L. Dobrushin},
title = {Gibbs state describing coexistence of phases for a three-dimensional {Ising} model},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {619--639},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a1/}
}
TY - JOUR AU - R. L. Dobrushin TI - Gibbs state describing coexistence of phases for a three-dimensional Ising model JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1972 SP - 619 EP - 639 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a1/ LA - ru ID - TVP_1972_17_4_a1 ER -
R. L. Dobrushin. Gibbs state describing coexistence of phases for a three-dimensional Ising model. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 4, pp. 619-639. http://geodesic.mathdoc.fr/item/TVP_1972_17_4_a1/