On estimation of the error of Monte-Carlo technique caused by imperfections of the distribution of random numbers
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 3, pp. 518-533

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach to estimation of the Monte-Carlo technique error caused by imperfections of the distribution of random numbers is proposed. The approach is illustrated by an example of the simple integral $\overline\varphi=\int_0^1\varphi(x)\,dx$ calculation by the method of indeopendent tests. The error is estimated by $$ S=\sup U(\varphi),\quad\varphi\in G,\quad U(\varphi)=\Bigl(\int_0^1\varphi(x)\,dF(x)-\overline\varphi\Bigr)\bigg/\sqrt{\int_0^1(\varphi(x)-\overline\varphi)^2\,dx}, $$ where $F$ is the distribution function of random numbers in the interval $[0,1]$, $G$ is the class of functions with finite “standartized variation”: $$ G=\biggl\{\varphi\colon\bigvee_0^1\varphi\bigg/\sqrt{\int_0^1(\varphi(x)-\overline\varphi)^2\,dx}\le v\biggr\}. $$ It is shown that the problem of determining the value $S$ can be reduced to a variational problem of finding the function that minimizes the functional $U(\varphi)=\int_0^1\varphi\,dF$ under the following restrictions: $$ \int_0^1\varphi\,dx=0,\quad\int_0^1\varphi^2\,dx=1\quad\text{and}\quad\bigvee_0^1\varphi\le v $$ A solution of this variational problem is given.
@article{TVP_1972_17_3_a8,
     author = {G. A. Kozlov},
     title = {On estimation of the error of {Monte-Carlo} technique caused by imperfections of the distribution of random numbers},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {518--533},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a8/}
}
TY  - JOUR
AU  - G. A. Kozlov
TI  - On estimation of the error of Monte-Carlo technique caused by imperfections of the distribution of random numbers
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1972
SP  - 518
EP  - 533
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a8/
LA  - ru
ID  - TVP_1972_17_3_a8
ER  - 
%0 Journal Article
%A G. A. Kozlov
%T On estimation of the error of Monte-Carlo technique caused by imperfections of the distribution of random numbers
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1972
%P 518-533
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a8/
%G ru
%F TVP_1972_17_3_a8
G. A. Kozlov. On estimation of the error of Monte-Carlo technique caused by imperfections of the distribution of random numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 3, pp. 518-533. http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a8/