Notes on inequalities for sums of independent variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 3, pp. 588-590

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we note that the inequalities of [1], [2] will also remain valid for the maximum of sequential sums: $\zeta_n=\max\limits_{k\le n}S_k$.
@article{TVP_1972_17_3_a19,
     author = {A. A. Borovkov},
     title = {Notes on inequalities for sums of independent variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {588--590},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a19/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - Notes on inequalities for sums of independent variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1972
SP  - 588
EP  - 590
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a19/
LA  - ru
ID  - TVP_1972_17_3_a19
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T Notes on inequalities for sums of independent variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1972
%P 588-590
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a19/
%G ru
%F TVP_1972_17_3_a19
A. A. Borovkov. Notes on inequalities for sums of independent variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 3, pp. 588-590. http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a19/