Construction of $D$-optimal weighing designs with the minimal number of observations
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 3, pp. 578-582
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of constructing $D$-optimal designs on a $(0,1)$-hypercube for a special case of linear regression is considered. These designs are found to be weighing ones (for the spring balance problem). $D$-optimal designs with minimal number of observations are obtained.
@article{TVP_1972_17_3_a17,
author = {V. Z. Brodskii and T. I. Golikova},
title = {Construction of $D$-optimal weighing designs with the minimal number of observations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {578--582},
year = {1972},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a17/}
}
TY - JOUR AU - V. Z. Brodskii AU - T. I. Golikova TI - Construction of $D$-optimal weighing designs with the minimal number of observations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1972 SP - 578 EP - 582 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a17/ LA - ru ID - TVP_1972_17_3_a17 ER -
V. Z. Brodskii; T. I. Golikova. Construction of $D$-optimal weighing designs with the minimal number of observations. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 3, pp. 578-582. http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a17/