On conditional brownian motions with oblique reflection, which correspond to inaccessible singular points
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 3, pp. 557-563
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $D$ be a two-dimensional domain bounded by a smooth contour $L$, $v(z)$ be a vector field at points of $L$ directed inward $D$, $\Delta$ be a finite set of discontinuity points of $v(z)$ and $X$ be a Brownian motion in $D$ with reflection away from $L\setminus\Delta$ in the direction of $v(z)$. We construct subprocesses of $X$ corresponding to inaccessible points of $\Delta$ and investigate the behaviour of their trajectories. This construction enables us to investigate the boundary value problem: $$ \frac{\partial^2h}{\partial x^2}+\frac{\partial^2h}{\partial y^2}=0,\quad\frac{\partial h}{\partial v}\bigg|_{L\setminus\Delta}=0 $$ and prove that each non-negative solution of this problem may be uniquely represented in the form ($*$).
@article{TVP_1972_17_3_a14,
author = {A. L. Rozental'},
title = {On conditional brownian motions with oblique reflection, which correspond to inaccessible singular points},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {557--563},
year = {1972},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a14/}
}
TY - JOUR AU - A. L. Rozental' TI - On conditional brownian motions with oblique reflection, which correspond to inaccessible singular points JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1972 SP - 557 EP - 563 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a14/ LA - ru ID - TVP_1972_17_3_a14 ER -
A. L. Rozental'. On conditional brownian motions with oblique reflection, which correspond to inaccessible singular points. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 3, pp. 557-563. http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a14/