The first problem of diffusion on differentiable manifolds
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 3, pp. 549-557

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\xi_\Delta(k),\ k=0,1,\dots,n=n(\Delta)\}$be a sequence of random walks on a differentiable manifold $M$. In this paper, we obtain the classical conditions for convergence of $\xi_\Delta$ to an inhomogeneous diffusion process $\xi(t)$ in terms of weak convergence of transition probabilities $P_\Delta(t_k,x;t,\Gamma)$ using some modification of Khintchine's idea from [1]. One of many consequences of the result is a limit theorem for convolutions of noncommuting probability measures on Lie groups.
@article{TVP_1972_17_3_a13,
     author = {G. M. Sobko},
     title = {The first problem of diffusion on differentiable manifolds},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {549--557},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a13/}
}
TY  - JOUR
AU  - G. M. Sobko
TI  - The first problem of diffusion on differentiable manifolds
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1972
SP  - 549
EP  - 557
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a13/
LA  - ru
ID  - TVP_1972_17_3_a13
ER  - 
%0 Journal Article
%A G. M. Sobko
%T The first problem of diffusion on differentiable manifolds
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1972
%P 549-557
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a13/
%G ru
%F TVP_1972_17_3_a13
G. M. Sobko. The first problem of diffusion on differentiable manifolds. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 3, pp. 549-557. http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a13/