The first problem of diffusion on differentiable manifolds
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 3, pp. 549-557
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{\xi_\Delta(k),\ k=0,1,\dots,n=n(\Delta)\}$be a sequence of random walks on a differentiable manifold $M$. In this paper, we obtain the classical conditions for convergence of $\xi_\Delta$ to an inhomogeneous diffusion process $\xi(t)$ in terms of weak convergence of transition probabilities $P_\Delta(t_k,x;t,\Gamma)$ using some modification of Khintchine's idea from [1]. One of many consequences of the result is a limit theorem for convolutions of noncommuting probability measures on Lie groups.
@article{TVP_1972_17_3_a13,
author = {G. M. Sobko},
title = {The first problem of diffusion on differentiable manifolds},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {549--557},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a13/}
}
G. M. Sobko. The first problem of diffusion on differentiable manifolds. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 3, pp. 549-557. http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a13/