The action functional for a~class of stochastic processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 3, pp. 536-541

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x_t$ be a Gaussian process with zero mean and correlation operator $A$. The action functional for this process is defined by the equality $S(\varphi)=(A^{-1/2}\varphi,A^{-1/2}\varphi)$. We prove a number of theorems concerning action functionals which enable us to solve some asymptotic problems for Gaussian processes and processes obtained from Gaussian ones by nonlinear transforms.
@article{TVP_1972_17_3_a10,
     author = {M. I. Freidlin},
     title = {The action functional for a~class of stochastic processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {536--541},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a10/}
}
TY  - JOUR
AU  - M. I. Freidlin
TI  - The action functional for a~class of stochastic processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1972
SP  - 536
EP  - 541
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a10/
LA  - ru
ID  - TVP_1972_17_3_a10
ER  - 
%0 Journal Article
%A M. I. Freidlin
%T The action functional for a~class of stochastic processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1972
%P 536-541
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a10/
%G ru
%F TVP_1972_17_3_a10
M. I. Freidlin. The action functional for a~class of stochastic processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 3, pp. 536-541. http://geodesic.mathdoc.fr/item/TVP_1972_17_3_a10/