The distribution of the first hit for stable and asymptotically stable walks on an interval
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 342-349
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{\xi(t);t\ge0\}$ be a strongly stable process, $\tau=\inf\{t\colon\xi(t)\notin[0,1]\}$.
Formulas for $\mathbf P\{1\le\xi(\tau)1+y\mid\xi(0)=x\}$, and $\mathbf P\{0\ge\xi(\tau)>-y\mid\xi(0)=x\}$, $0\le x\le1$, $y\ge0$, are derived and applied to random walks.
@article{TVP_1972_17_2_a9,
author = {B. A. Rogozin},
title = {The distribution of the first hit for stable and asymptotically stable walks on an interval},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {342--349},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a9/}
}
TY - JOUR AU - B. A. Rogozin TI - The distribution of the first hit for stable and asymptotically stable walks on an interval JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1972 SP - 342 EP - 349 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a9/ LA - ru ID - TVP_1972_17_2_a9 ER -
B. A. Rogozin. The distribution of the first hit for stable and asymptotically stable walks on an interval. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 342-349. http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a9/