The distribution of the first hit for stable and asymptotically stable walks on an interval
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 342-349

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\xi(t);t\ge0\}$ be a strongly stable process, $\tau=\inf\{t\colon\xi(t)\notin[0,1]\}$. Formulas for $\mathbf P\{1\le\xi(\tau)1+y\mid\xi(0)=x\}$, and $\mathbf P\{0\ge\xi(\tau)>-y\mid\xi(0)=x\}$, $0\le x\le1$, $y\ge0$, are derived and applied to random walks.
@article{TVP_1972_17_2_a9,
     author = {B. A. Rogozin},
     title = {The distribution of the first hit for stable and asymptotically stable walks on an interval},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {342--349},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a9/}
}
TY  - JOUR
AU  - B. A. Rogozin
TI  - The distribution of the first hit for stable and asymptotically stable walks on an interval
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1972
SP  - 342
EP  - 349
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a9/
LA  - ru
ID  - TVP_1972_17_2_a9
ER  - 
%0 Journal Article
%A B. A. Rogozin
%T The distribution of the first hit for stable and asymptotically stable walks on an interval
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1972
%P 342-349
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a9/
%G ru
%F TVP_1972_17_2_a9
B. A. Rogozin. The distribution of the first hit for stable and asymptotically stable walks on an interval. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 342-349. http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a9/