On probabilities of large deviations for sums of independent random variables
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 320-341
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_1,\dots,X_n,\dots$ be a sequence of independent identically distributed random variables with distribution function $F(x)$, and let $\mathbf EX_i=0$, $\mathbf DX_i=1$. Put
$$
F_n(x)=\mathbf P\biggl\{\sum_1^nX_i\biggr\},\quad\Phi(x)=\frac1{\sqrt{2\pi}}\int_{-\infty}^xe^{-z^2/2}\,dz.
$$ 
Let $\Lambda(z)$ be such a function that $\Lambda(z)/\sqrt z\to\infty$, $z\to\infty$, and $\Lambda(z)$, $1/2\alpha1$. We consider the following problem: under which conditions
$$
1-F_n(x)=\biggl(1-\Phi\Bigl(\frac x{\sqrt n}\Bigr)\biggr)\exp\biggl\{\sum_{\nu=3}^k\mu_\nu\frac{x^\nu}{n^{\nu-1}}\biggr\}(1+o(1)),\quad n\to\infty,
$$
uniformly in $x\in[0,\Lambda(n)]$ where $k$ is the largest integer for which $\varlimsup_{z\to\infty}\Lambda^k(z)/z^{k-1}>0$ and $\mu_3,\dots,\mu_k$ are real numbers? Theorem 4 gives an answer to this question under some additional restrictions on $\Lambda(z)$. In Theorem 2 we consider the case $\Lambda(z)=z^\alpha$.
			
            
            
            
          
        
      @article{TVP_1972_17_2_a8,
     author = {L. V. Osipov},
     title = {On probabilities of large deviations for sums of independent random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {320--341},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a8/}
}
                      
                      
                    L. V. Osipov. On probabilities of large deviations for sums of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 320-341. http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a8/
