On centain properties of continuous stochastic approximation procedures
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 310-319
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the continuous Kiefer–Wolfowitz procedure for estimating the maximum of a regression surface converges, under some conditions, almost surely to the maximum.
An analoguos result is proved for the continuous Robbins–Monro procedure of stochastic approximation.
@article{TVP_1972_17_2_a7,
author = {M. B. Nevel'son},
title = {On centain properties of continuous stochastic approximation procedures},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {310--319},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a7/}
}
M. B. Nevel'son. On centain properties of continuous stochastic approximation procedures. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 310-319. http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a7/