On centain properties of continuous stochastic approximation procedures
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 310-319

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the continuous Kiefer–Wolfowitz procedure for estimating the maximum of a regression surface converges, under some conditions, almost surely to the maximum. An analoguos result is proved for the continuous Robbins–Monro procedure of stochastic approximation.
@article{TVP_1972_17_2_a7,
     author = {M. B. Nevel'son},
     title = {On centain properties of continuous stochastic approximation procedures},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {310--319},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a7/}
}
TY  - JOUR
AU  - M. B. Nevel'son
TI  - On centain properties of continuous stochastic approximation procedures
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1972
SP  - 310
EP  - 319
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a7/
LA  - ru
ID  - TVP_1972_17_2_a7
ER  - 
%0 Journal Article
%A M. B. Nevel'son
%T On centain properties of continuous stochastic approximation procedures
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1972
%P 310-319
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a7/
%G ru
%F TVP_1972_17_2_a7
M. B. Nevel'son. On centain properties of continuous stochastic approximation procedures. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 310-319. http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a7/