Some problems concerning stability under small stochastic perturbations
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 281-295

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x_0$ be a stable equilibrium point of a dynamic system $\dot x=b(x)$ in $R^r$; a Markov stochastic process $x_t^\varepsilon$ appears as a result of small stochastic perturbations of this system: $dx_t^\varepsilon=b(x_t^\varepsilon)\,dt+\varepsilon\sigma(x_t^\varepsilon)\,d\xi_t$ where $\xi_t$ is a Wiener process. Problems concerning stability of the point $x_0$ with respect to the stochastic process $x_t^\varepsilon$ are considered. All trajectories of the process $x_t^\varepsilon$ sooner or later, leave each neighbourhood of the equilibrium point. The problem arises how to choose a region of a given area for which the mean exit time is maximum? Another problem setting: suppose that one can control the process $x_t^\varepsilon$ by chosing a drift vector $b(x)$ at each point $x$ of some set of vectors $\Pi(x)$. How should one control the process so that the mean exit time of a given region would be maximum (minimum)? Asymptotically optimal solutions to these questions are given: the control proposed by the authors is not worse (not essentially worse) than any other control if $\varepsilon$ is sufficiently small; the mean exit time of any other region $G$ of a given area is less than that of the region the authors point at if $\varepsilon$ is small. The way of solving these problems is to estimate the main term of the mean exit time of a given region $G$ when $\varepsilon\to0$. This main term is $\exp\Bigl\{\frac1{2\varepsilon^2}\min\limits_{y\in\partial G}V(x_0,y)\Bigr\}$ where $V(x_0,x)$ is a function that does not depend on the region and can be found as a solution of a specific problem for the differential equation $$ \sum a^{ij}(x)\frac{\partial V}{\partial x^i}\frac{\partial V}{\partial x^j}+4\sum b^i(x)\frac{\partial V}{\partial x^i}=0,\quad(a^{ij}(x))=\sigma(x)\sigma^*(x). $$ In order to solve the optimal control problem, a non-linear partial differential equation is considered. In the case of shift-invariance this equation can be solved by means of a certain geometrical construction.
@article{TVP_1972_17_2_a5,
     author = {A. D. Venttsel' and M. I. Freidlin},
     title = {Some problems concerning stability under small stochastic perturbations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {281--295},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a5/}
}
TY  - JOUR
AU  - A. D. Venttsel'
AU  - M. I. Freidlin
TI  - Some problems concerning stability under small stochastic perturbations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1972
SP  - 281
EP  - 295
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a5/
LA  - ru
ID  - TVP_1972_17_2_a5
ER  - 
%0 Journal Article
%A A. D. Venttsel'
%A M. I. Freidlin
%T Some problems concerning stability under small stochastic perturbations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1972
%P 281-295
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a5/
%G ru
%F TVP_1972_17_2_a5
A. D. Venttsel'; M. I. Freidlin. Some problems concerning stability under small stochastic perturbations. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 281-295. http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a5/