A representation of random matrices in orispherical coordinates and its application to telegraph equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 266-280
Cet article a éte moissonné depuis la source Math-Net.Ru
A central limit theorem for products $g(n)=g_1g_2\dots g_n$ of random matrices $g_1,g_2,\dots,g_n$ was considered in an earlier paper [5], a representation $$ g(n)=x(n)d(n)u(n) $$ with orthogonal (unitary) matrices $x(n)$ and $u(n)$ and diagonal $d(n)$ being investigated. Products of random matrices, as far as we know, arise in the theory of telegraph equations [9], [10], where the matrices $g_1,\dots,g_n$ are symplectic, but unitary matrices have no immediate physical interpretation in the frame of this theory. From the viewpoint of possible applications a more physical form of central limit theorem is highly desirable. Such forms are given in the present paper.
@article{TVP_1972_17_2_a4,
author = {V. N. Tutubalin},
title = {A~representation of random matrices in orispherical coordinates and its application to telegraph equations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {266--280},
year = {1972},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a4/}
}
TY - JOUR AU - V. N. Tutubalin TI - A representation of random matrices in orispherical coordinates and its application to telegraph equations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1972 SP - 266 EP - 280 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a4/ LA - ru ID - TVP_1972_17_2_a4 ER -
V. N. Tutubalin. A representation of random matrices in orispherical coordinates and its application to telegraph equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 266-280. http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a4/