The structure of random graphs~$\mathscr G_m (x\mid h)$
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 238-252
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is an immediate continuation of [1]. On the basis of the more exact estimate than in [1] of statistical sum $Z_m(x\mid h)$, limiting distributions of various characteristicsof random graph $\mathscr G_m (x\mid h)$ are found. In particular, asymptotical normality of the number of all components, the number of small components, the number of vertices in a gigantic component is proved. The peculiarities of the transition through the phase division line; in the domain $x>2$ are studied.
@article{TVP_1972_17_2_a2,
author = {V. E. Stepanov},
title = {The structure of random graphs~$\mathscr G_m (x\mid h)$},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {238--252},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a2/}
}
V. E. Stepanov. The structure of random graphs~$\mathscr G_m (x\mid h)$. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 238-252. http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a2/