The structure of random graphs~$\mathscr G_m (x\mid h)$
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 238-252

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is an immediate continuation of [1]. On the basis of the more exact estimate than in [1] of statistical sum $Z_m(x\mid h)$, limiting distributions of various characteristicsof random graph $\mathscr G_m (x\mid h)$ are found. In particular, asymptotical normality of the number of all components, the number of small components, the number of vertices in a gigantic component is proved. The peculiarities of the transition through the phase division line; in the domain $x>2$ are studied.
@article{TVP_1972_17_2_a2,
     author = {V. E. Stepanov},
     title = {The structure of random graphs~$\mathscr G_m (x\mid h)$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {238--252},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a2/}
}
TY  - JOUR
AU  - V. E. Stepanov
TI  - The structure of random graphs~$\mathscr G_m (x\mid h)$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1972
SP  - 238
EP  - 252
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a2/
LA  - ru
ID  - TVP_1972_17_2_a2
ER  - 
%0 Journal Article
%A V. E. Stepanov
%T The structure of random graphs~$\mathscr G_m (x\mid h)$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1972
%P 238-252
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a2/
%G ru
%F TVP_1972_17_2_a2
V. E. Stepanov. The structure of random graphs~$\mathscr G_m (x\mid h)$. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 2, pp. 238-252. http://geodesic.mathdoc.fr/item/TVP_1972_17_2_a2/