Random Mappings and Decompositions of Finite Sets
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 129-142
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X=\{1,2,\dots,n\}$ be a finite set,
\begin{equation}
X=S_1+\cdots+S_r
\end{equation}
be a partition of $X$.
\begin{equation}
\Phi=\begin{pmatrix}
1 2 \dots n\\
\varphi_1 \varphi_2 \ldots \varphi_n\\
\end{pmatrix}
\end{equation}
be a permutation of elements of $X$, $N(A)$ be the number of elements of any finite set $A$. We denote by $R(s_1,\dots,s_r)$ the set of all partitions (1) with $N(S_j)=s_j$, $j=1,\dots,r$, and by $T(z_1,\dots,z_m)$ the set of all permutations (2) with cycles of lengths $z_1\le z_2\le\dots\le z_m$.
@article{TVP_1972_17_1_a9,
author = {B. A. Sevast'yanov},
title = {Random {Mappings} and {Decompositions} of {Finite} {Sets}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {129--142},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a9/}
}
B. A. Sevast'yanov. Random Mappings and Decompositions of Finite Sets. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 129-142. http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a9/