Random Mappings and Decompositions of Finite Sets
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 129-142

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X=\{1,2,\dots,n\}$ be a finite set, \begin{equation} X=S_1+\cdots+S_r \end{equation} be a partition of $X$. \begin{equation} \Phi=\begin{pmatrix} 1 2 \dots n\\ \varphi_1 \varphi_2 \ldots \varphi_n\\ \end{pmatrix} \end{equation} be a permutation of elements of $X$, $N(A)$ be the number of elements of any finite set $A$. We denote by $R(s_1,\dots,s_r)$ the set of all partitions (1) with $N(S_j)=s_j$, $j=1,\dots,r$, and by $T(z_1,\dots,z_m)$ the set of all permutations (2) with cycles of lengths $z_1\le z_2\le\dots\le z_m$.
@article{TVP_1972_17_1_a9,
     author = {B. A. Sevast'yanov},
     title = {Random {Mappings} and {Decompositions} of {Finite} {Sets}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {129--142},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a9/}
}
TY  - JOUR
AU  - B. A. Sevast'yanov
TI  - Random Mappings and Decompositions of Finite Sets
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1972
SP  - 129
EP  - 142
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a9/
LA  - ru
ID  - TVP_1972_17_1_a9
ER  - 
%0 Journal Article
%A B. A. Sevast'yanov
%T Random Mappings and Decompositions of Finite Sets
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1972
%P 129-142
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a9/
%G ru
%F TVP_1972_17_1_a9
B. A. Sevast'yanov. Random Mappings and Decompositions of Finite Sets. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 129-142. http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a9/