Control of a Solution of a Stochastic Integral Equation
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 111-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\xi(t)$ be a Wiener process in $E_n$, $\alpha_n$ a non-anticipative vector function, $\delta=\{\alpha_t\}$, $x_t^{\delta,x}$ a solution of $$ x_t=x+\int_0^t\sigma(x_s,\alpha_s)d\xi_s+\int_0^t b(x_s,\alpha_s)\,ds, $$ $\varphi=\varphi(x)$. In this paper, smouthness of functions $$ v(x)=\sup_{\delta,\tau}\mathbf{M}\biggl[\int_0^\tau e^{-\lambda t}f(x_t^{\delta,x},\alpha_t)\,dt+e^{-\lambda\tau}\varphi(x_\tau^\delta,x)\biggr] $$ is investigated. Under conditions of smouthness type on $\sigma,b,f,\varphi$ it is proved that $v\in W_{p,\textrm{loc}}^2$ (Sobolev space). If, in addition, $\sigma\sigma^*$ is strictly positive-definite, then $$ \sup_\alpha (L^\alpha v+f^\alpha)\leq 0\ (\textrm{a.e.}), \quad \sup_\alpha (L^\alpha v+f^\alpha)=0\ (\textrm{a.e.}\ \{x: v(x)>\varphi(x)\}). $$ The structure of $\varepsilon$-optimal policies $\delta$ and $\varepsilon$-optimal stopping times $\tau$ is also studied.
@article{TVP_1972_17_1_a8,
     author = {N. V. Krylov},
     title = {Control of a {Solution} of a {Stochastic} {Integral} {Equation}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {111--128},
     year = {1972},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a8/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - Control of a Solution of a Stochastic Integral Equation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1972
SP  - 111
EP  - 128
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a8/
LA  - ru
ID  - TVP_1972_17_1_a8
ER  - 
%0 Journal Article
%A N. V. Krylov
%T Control of a Solution of a Stochastic Integral Equation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1972
%P 111-128
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a8/
%G ru
%F TVP_1972_17_1_a8
N. V. Krylov. Control of a Solution of a Stochastic Integral Equation. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 111-128. http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a8/