On Differential Equations with Random Coefficients
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 188-194

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a Banach space, $\mathscr{L}(E)$ the algebra of continous linear operators $A\colon E\to E$ and $A(\omega,t)$ a stationary stochastic process in $\mathscr{L}(E)$. In this paper, several asymptotic properties of solutions of the differential equation $\dot{x}=A(\omega,t)x$ are considered. A part of the paper deals with the special case $E=R^m$.
@article{TVP_1972_17_1_a18,
     author = {I. V. Evstigneev and S. E. Kuznetsov},
     title = {On {Differential} {Equations} with {Random} {Coefficients}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {188--194},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a18/}
}
TY  - JOUR
AU  - I. V. Evstigneev
AU  - S. E. Kuznetsov
TI  - On Differential Equations with Random Coefficients
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1972
SP  - 188
EP  - 194
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a18/
LA  - ru
ID  - TVP_1972_17_1_a18
ER  - 
%0 Journal Article
%A I. V. Evstigneev
%A S. E. Kuznetsov
%T On Differential Equations with Random Coefficients
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1972
%P 188-194
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a18/
%G ru
%F TVP_1972_17_1_a18
I. V. Evstigneev; S. E. Kuznetsov. On Differential Equations with Random Coefficients. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 188-194. http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a18/