Representations of It\^o Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 167-172
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(\Omega,\mathscr{F},\mathbf{P})$ be a complete probability space. By an Itô process relative to an increasing family $\{\mathscr{F}_t\}$ of sub-$\sigma$-algebras of $\mathscr{F}$, we mean a process $\xi$ of the form
$$
\xi_t=\xi_0+\int_0^t\alpha_s\,ds+\int_0^t \beta_s\,dW_s
$$
where $\alpha,\beta$ are measurable processes well adapted to $\{\mathscr{F}_t\}$, $\displaystyle\int_0^t (|\alpha_s|+\beta_{s}^2)ds\infty$ $\forall\,t$ a.s., and $W$ is a standard Wiener process with respect to $\mathscr{F}$. We study conditions under which an Itô process $\xi$ relative to $\{\mathscr{F}_t\}$ is also an Itô process relative to a family $\{\mathscr{G}_t\}$ of “simpler” $\sigma$-algebras: $\mathscr{G}_t\subseteq\mathscr{F}_t$ for each $t$.
@article{TVP_1972_17_1_a15,
author = {M. P. Ershov},
title = {Representations of {It\^o} {Processes}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {167--172},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a15/}
}
M. P. Ershov. Representations of It\^o Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 167-172. http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a15/