On L\'evy--Baxter Theorems for Random Fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 153-160

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi(t)=\xi(t_1,\dots,t_k)$ be a Gaussian random field. In this paper, some sufficient conditions for convergence of the sums $$ \sum_{\alpha_1,\dots,\alpha_k=1}^{2^n}F_n(\Delta_{2^{-n}}\xi(2^{-n}\alpha)), \quad \alpha=(\alpha_1,\dots,\alpha_k), $$ to a constant are obtained, where $\Delta_{2^{-n}}\xi(t)$ is the $k$th increment of the sample function $\xi(t)$ defined by (1) and $F_n$ are Borel functions. The results are analogues to those contained in [1]–[6] and can be considered as some generalizations of the theorem due to Berman in [5].
@article{TVP_1972_17_1_a13,
     author = {T. V. Arak},
     title = {On {L\'evy--Baxter} {Theorems} for {Random} {Fields}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {153--160},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a13/}
}
TY  - JOUR
AU  - T. V. Arak
TI  - On L\'evy--Baxter Theorems for Random Fields
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1972
SP  - 153
EP  - 160
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a13/
LA  - ru
ID  - TVP_1972_17_1_a13
ER  - 
%0 Journal Article
%A T. V. Arak
%T On L\'evy--Baxter Theorems for Random Fields
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1972
%P 153-160
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a13/
%G ru
%F TVP_1972_17_1_a13
T. V. Arak. On L\'evy--Baxter Theorems for Random Fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 153-160. http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a13/