On L\'evy--Baxter Theorems for Random Fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 153-160
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\xi(t)=\xi(t_1,\dots,t_k)$ be a Gaussian random field. In this paper, some sufficient conditions for convergence of the sums
$$
\sum_{\alpha_1,\dots,\alpha_k=1}^{2^n}F_n(\Delta_{2^{-n}}\xi(2^{-n}\alpha)), \quad \alpha=(\alpha_1,\dots,\alpha_k),
$$
to a constant are obtained, where $\Delta_{2^{-n}}\xi(t)$ is the $k$th increment of the sample function $\xi(t)$ defined by (1) and $F_n$ are Borel functions. The results are analogues to those contained in [1]–[6] and can be considered as some generalizations of the theorem due to Berman in [5].
@article{TVP_1972_17_1_a13, author = {T. V. Arak}, title = {On {L\'evy--Baxter} {Theorems} for {Random} {Fields}}, journal = {Teori\^a vero\^atnostej i ee primeneni\^a}, pages = {153--160}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {1972}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a13/} }
T. V. Arak. On L\'evy--Baxter Theorems for Random Fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 153-160. http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a13/