On Lévy–Baxter Theorems for Random Fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 153-160
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\xi(t)=\xi(t_1,\dots,t_k)$ be a Gaussian random field. In this paper, some sufficient conditions for convergence of the sums $$ \sum_{\alpha_1,\dots,\alpha_k=1}^{2^n}F_n(\Delta_{2^{-n}}\xi(2^{-n}\alpha)), \quad \alpha=(\alpha_1,\dots,\alpha_k), $$ to a constant are obtained, where $\Delta_{2^{-n}}\xi(t)$ is the $k$th increment of the sample function $\xi(t)$ defined by (1) and $F_n$ are Borel functions. The results are analogues to those contained in [1]–[6] and can be considered as some generalizations of the theorem due to Berman in [5].
@article{TVP_1972_17_1_a13,
author = {T. V. Arak},
title = {On {L\'evy{\textendash}Baxter} {Theorems} for {Random} {Fields}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {153--160},
year = {1972},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a13/}
}
T. V. Arak. On Lévy–Baxter Theorems for Random Fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 153-160. http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a13/