Some Properties of the Supremum of Sums of Stationary Related Random Variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 147-150

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\xi_j,\ -\infty$ be a strong-sense stationary sequence $$ X_k=\sum_{j=1}^k \xi_j,\quad X_0=0,\quad \eta=\sup_{k\ge 0}X_k,\quad \theta=\inf_{k\ge 0}X_k. $$ We prove two theorems; the first explains the connection between the nature of $\{\xi_j\}$ and the distributions of $\eta$ and $\theta$; the second gives a useful inequality for $\mathbf{P}(\eta>0)$ in terms of the distribution of $\xi_j$.
@article{TVP_1972_17_1_a11,
     author = {A. A. Borovkov},
     title = {Some {Properties} of the {Supremum} of {Sums} of {Stationary} {Related} {Random} {Variables}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {147--150},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a11/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - Some Properties of the Supremum of Sums of Stationary Related Random Variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1972
SP  - 147
EP  - 150
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a11/
LA  - ru
ID  - TVP_1972_17_1_a11
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T Some Properties of the Supremum of Sums of Stationary Related Random Variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1972
%P 147-150
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a11/
%G ru
%F TVP_1972_17_1_a11
A. A. Borovkov. Some Properties of the Supremum of Sums of Stationary Related Random Variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 147-150. http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a11/