Some Properties of the Supremum of Sums of Stationary Related Random Variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 147-150
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{\xi_j,\ -\infty$ be a strong-sense stationary sequence
$$
X_k=\sum_{j=1}^k \xi_j,\quad X_0=0,\quad \eta=\sup_{k\ge 0}X_k,\quad \theta=\inf_{k\ge 0}X_k.
$$ We prove two theorems; the first explains the connection between the nature of $\{\xi_j\}$ and the distributions of $\eta$ and $\theta$; the second gives a useful inequality for $\mathbf{P}(\eta>0)$ in terms of the distribution of $\xi_j$.
@article{TVP_1972_17_1_a11,
author = {A. A. Borovkov},
title = {Some {Properties} of the {Supremum} of {Sums} of {Stationary} {Related} {Random} {Variables}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {147--150},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a11/}
}
TY - JOUR AU - A. A. Borovkov TI - Some Properties of the Supremum of Sums of Stationary Related Random Variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1972 SP - 147 EP - 150 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a11/ LA - ru ID - TVP_1972_17_1_a11 ER -
A. A. Borovkov. Some Properties of the Supremum of Sums of Stationary Related Random Variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 147-150. http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a11/