Absolute continuity of measures corresponding to Markov processes with discrete time
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 703-707
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The aim of the paper is to obtain a generalization of a theorem due to Kukutani [1] concerning the equivalence of product measures. We get a necessary and sufficient condition of absolute continuity for any Markov measures in $X=\prod_{n=1}^\infty Y$. Under the assumption that the "$0-1$" law is valid with respect to $\widetilde\mu$ it can be formulated as follows: $\widetilde\mu\prec\mu$ iff $\mu_n\prec\mu_n$ and $\int\rho_n^{1/q}\,d\mu_n\not\to0$ for every $q>1$ where $\rho_n=d\widetilde\mu_n/d\mu_n$, $\mu_n$, $\widetilde\mu_n$ are the $n$-dimensional projections of $\mu$ and $\widetilde\mu$.
In particular, measures corresponding to chains with a finite number of states and processes with homogeneous and independent increments are considered.
			
            
            
            
          
        
      @article{TVP_1971_16_4_a8,
     author = {A. A. Lodkin},
     title = {Absolute continuity of measures corresponding to {Markov} processes with discrete time},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {703--707},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a8/}
}
                      
                      
                    TY - JOUR AU - A. A. Lodkin TI - Absolute continuity of measures corresponding to Markov processes with discrete time JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1971 SP - 703 EP - 707 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a8/ LA - ru ID - TVP_1971_16_4_a8 ER -
A. A. Lodkin. Absolute continuity of measures corresponding to Markov processes with discrete time. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 703-707. http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a8/
