On stochastic approximation for random processes with continuous time
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 688-695

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers continuous time analogue (1) of the Robbins–Monro procedure for approximating the root of the equation $M(\theta)=\alpha$ from the observation process $Y(x,t)=M(x)+Z(t)$. The asymptotic properties of the procedure are investigated under the strong mixing condition for the stochastic process $Z(t)$.
@article{TVP_1971_16_4_a6,
     author = {T. P. Krasulina},
     title = {On stochastic approximation for random processes with continuous time},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {688--695},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a6/}
}
TY  - JOUR
AU  - T. P. Krasulina
TI  - On stochastic approximation for random processes with continuous time
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1971
SP  - 688
EP  - 695
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a6/
LA  - ru
ID  - TVP_1971_16_4_a6
ER  - 
%0 Journal Article
%A T. P. Krasulina
%T On stochastic approximation for random processes with continuous time
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1971
%P 688-695
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a6/
%G ru
%F TVP_1971_16_4_a6
T. P. Krasulina. On stochastic approximation for random processes with continuous time. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 688-695. http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a6/