On a~uniform bound for the rate of convergence in the multidi mensional local limit theorem for densities
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 765-767

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{Xi\}$, $i\ge1$, be independent random vectors in $R^k$ with bounded densities $p_i(x)\le A_i\infty$, such that $\mathbf EX_i=0$, $\mathbf E|X_i|^3=\beta_i\infty$. If we denote $\sigma_i^2=\mathbf E|X_i|^2$, $B_n^2=\sum_{i=1}^n\sigma_i^2$, $K_n$ а matrix such that $Y_n=K_n\sum_{i=1}^nX_i$ has a unit covariance matrix, $u_n(x)$ and $\varphi(x)$ the densities of $Y_n$ and $k$-dimensional standard normal distribution respectively, then, under the assumptions (4) and (5), the relation (6) is true.
@article{TVP_1971_16_4_a22,
     author = {T. L. Sherva\v{s}idze},
     title = {On a~uniform bound for the rate of convergence in the multidi mensional local limit theorem for densities},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {765--767},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a22/}
}
TY  - JOUR
AU  - T. L. Shervašidze
TI  - On a~uniform bound for the rate of convergence in the multidi mensional local limit theorem for densities
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1971
SP  - 765
EP  - 767
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a22/
LA  - ru
ID  - TVP_1971_16_4_a22
ER  - 
%0 Journal Article
%A T. L. Shervašidze
%T On a~uniform bound for the rate of convergence in the multidi mensional local limit theorem for densities
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1971
%P 765-767
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a22/
%G ru
%F TVP_1971_16_4_a22
T. L. Shervašidze. On a~uniform bound for the rate of convergence in the multidi mensional local limit theorem for densities. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 765-767. http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a22/