On a uniform bound for the rate of convergence in the multidi mensional local limit theorem for densities
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 765-767
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\{Xi\}$, $i\ge1$, be independent random vectors in $R^k$ with bounded densities $p_i(x)\le A_i<\infty$, such that $\mathbf EX_i=0$, $\mathbf E|X_i|^3=\beta_i<\infty$. If we denote $\sigma_i^2=\mathbf E|X_i|^2$, $B_n^2=\sum_{i=1}^n\sigma_i^2$, $K_n$ а matrix such that $Y_n=K_n\sum_{i=1}^nX_i$ has a unit covariance matrix, $u_n(x)$ and $\varphi(x)$ the densities of $Y_n$ and $k$-dimensional standard normal distribution respectively, then, under the assumptions (4) and (5), the relation (6) is true.
@article{TVP_1971_16_4_a22,
author = {T. L. Sherva\v{s}idze},
title = {On a~uniform bound for the rate of convergence in the multidi mensional local limit theorem for densities},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {765--767},
year = {1971},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a22/}
}
TY - JOUR AU - T. L. Shervašidze TI - On a uniform bound for the rate of convergence in the multidi mensional local limit theorem for densities JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1971 SP - 765 EP - 767 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a22/ LA - ru ID - TVP_1971_16_4_a22 ER -
T. L. Shervašidze. On a uniform bound for the rate of convergence in the multidi mensional local limit theorem for densities. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 765-767. http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a22/