Inequalities for the probabilities of large deviations in terms of pseudo-moments
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 760-765
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_1,\dots,X_n$ be independent random variables with finite moments of order $t>2$ with zero means. Denote
\begin{gather*}
\sigma_i^2=\mathbf EX_i^2,\quad c_{i,t}=\mathbf E|X_i|^t,\quad\sigma^2=\sum_{i=1}^n\sigma_i^2,\quad c_t=\sum_{i=1}^nc_{i,t},\quad L_t=c_t/\sigma^t,
\\
S_n=\sum_{i=1}^nX_i.
\end{gather*}
In [1] it was proved that
$$
\mathbf P(S_n\ge x\sigma)\le\exp(-K_1x^2)+K_2L_t/x^t
$$
where $K_1$ and $K_2$ are constants dependent on $t$. 
Our aim is to obtain an analogous inequality the right-hand side of which contains the so-called pseudo-moments $\nu_t$ instead of $c_{i,t}$, the pseudo-moments of a distribution $F(x)$ being defined as
$$
\nu_t(F)=t\int_{-\infty}^\infty|F(x)-\Phi_X(x)||x|^{t-1}\,dx 
$$
where $\Phi_X(x)$ is the normal distribution function with the same mean and variance as $F(x)$.
			
            
            
            
          
        
      @article{TVP_1971_16_4_a21,
     author = {\v{S}. S. \`Ebralidze},
     title = {Inequalities for the probabilities of large deviations in terms of pseudo-moments},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {760--765},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a21/}
}
                      
                      
                    TY - JOUR AU - Š. S. Èbralidze TI - Inequalities for the probabilities of large deviations in terms of pseudo-moments JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1971 SP - 760 EP - 765 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a21/ LA - ru ID - TVP_1971_16_4_a21 ER -
Š. S. Èbralidze. Inequalities for the probabilities of large deviations in terms of pseudo-moments. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 760-765. http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a21/
