A~remark on independence of a~tubular statistic and the sample mean
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 753-755

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a sample of size $n$ from a distribution with density $y(x)$, we show that if a definite $n-1$-dimensional tubular statistic (i.e. a continuous function on $R^n$ reduceable by an orthogonal transformation to a function on $R^{n-1}$ vanishing only at the origin) and the sample mean are independent then $y(x)$ is normal.
@article{TVP_1971_16_4_a19,
     author = {L. B. Klebanov},
     title = {A~remark on independence of a~tubular statistic and the sample mean},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {753--755},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a19/}
}
TY  - JOUR
AU  - L. B. Klebanov
TI  - A~remark on independence of a~tubular statistic and the sample mean
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1971
SP  - 753
EP  - 755
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a19/
LA  - ru
ID  - TVP_1971_16_4_a19
ER  - 
%0 Journal Article
%A L. B. Klebanov
%T A~remark on independence of a~tubular statistic and the sample mean
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1971
%P 753-755
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a19/
%G ru
%F TVP_1971_16_4_a19
L. B. Klebanov. A~remark on independence of a~tubular statistic and the sample mean. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 753-755. http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a19/