A~remark on independence of a~tubular statistic and the sample mean
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 753-755
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a sample of size $n$ from a distribution with density $y(x)$, we show that if a definite $n-1$-dimensional tubular statistic (i.e. a continuous function on $R^n$ reduceable by an orthogonal transformation to a function on $R^{n-1}$ vanishing only at the origin) and the sample mean are independent then $y(x)$ is normal.
@article{TVP_1971_16_4_a19,
author = {L. B. Klebanov},
title = {A~remark on independence of a~tubular statistic and the sample mean},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {753--755},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a19/}
}
L. B. Klebanov. A~remark on independence of a~tubular statistic and the sample mean. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 753-755. http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a19/