On the computation of multidimensional integrals by the Monte-Carlo method
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 738-743
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that if $W(x)$ is an arbitrary non-negative function in $R^n$ then the Markov process with the transition density $$ P(x'\to x)=\int\rho(x'\to x'')\sigma(x''\to x)\,dx'' $$ where $\rho(x'\to x)$ is an arbitraty transition density and $$ \sigma(x'\to x)=\rho(x\to x')W(x)\Big/\int\rho(x\to x')W(x)\,dx $$ has the asymptotic probability density proportional to $W(x)$. Using this fact, a method for computation of multidimensional integrals is proposed.
@article{TVP_1971_16_4_a16,
author = {V. F. Tur\v{c}in},
title = {On the computation of multidimensional integrals by the {Monte-Carlo} method},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {738--743},
year = {1971},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a16/}
}
V. F. Turčin. On the computation of multidimensional integrals by the Monte-Carlo method. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 738-743. http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a16/