Limit laws for cumulative sums of independent random variables with distributions of a~finite number of types
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 614-637
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $Z_n=\frac1{B_n}\sum_{j=1}^nX_j-A_n$ ($n=1,2,\dots$) be a sequence of normalized sums of random variables with a non-degenerate limit distribution function $G(x)$. The paper describes classes $\mathfrak G_r$ of possible $G(x)$ when the distributions of $X_j$ ($j=1,2,\dots$) belong to at most $r$ ($r=1,2,\dots$) different types.
			
            
            
            
          
        
      @article{TVP_1971_16_4_a1,
     author = {A. A. Zinger},
     title = {Limit laws for cumulative sums of independent random variables with distributions of a~finite number of types},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {614--637},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a1/}
}
                      
                      
                    TY - JOUR AU - A. A. Zinger TI - Limit laws for cumulative sums of independent random variables with distributions of a~finite number of types JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1971 SP - 614 EP - 637 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a1/ LA - ru ID - TVP_1971_16_4_a1 ER -
%0 Journal Article %A A. A. Zinger %T Limit laws for cumulative sums of independent random variables with distributions of a~finite number of types %J Teoriâ veroâtnostej i ee primeneniâ %D 1971 %P 614-637 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a1/ %G ru %F TVP_1971_16_4_a1
A. A. Zinger. Limit laws for cumulative sums of independent random variables with distributions of a~finite number of types. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 614-637. http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a1/
