Limit laws for cumulative sums of independent random variables with distributions of a finite number of types
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 614-637
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $Z_n=\frac1{B_n}\sum_{j=1}^nX_j-A_n$ ($n=1,2,\dots$) be a sequence of normalized sums of random variables with a non-degenerate limit distribution function $G(x)$. The paper describes classes $\mathfrak G_r$ of possible $G(x)$ when the distributions of $X_j$ ($j=1,2,\dots$) belong to at most $r$ ($r=1,2,\dots$) different types.
@article{TVP_1971_16_4_a1,
author = {A. A. Zinger},
title = {Limit laws for cumulative sums of independent random variables with distributions of a~finite number of types},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {614--637},
year = {1971},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a1/}
}
TY - JOUR AU - A. A. Zinger TI - Limit laws for cumulative sums of independent random variables with distributions of a finite number of types JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1971 SP - 614 EP - 637 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a1/ LA - ru ID - TVP_1971_16_4_a1 ER -
A. A. Zinger. Limit laws for cumulative sums of independent random variables with distributions of a finite number of types. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 4, pp. 614-637. http://geodesic.mathdoc.fr/item/TVP_1971_16_4_a1/