On the expected number of real zeros of random polynomials. II.~Coefficients with non-zero means
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 495-503
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\xi_j$, $j=0,1\dots,$ be independent identically distributed random variables with $\mathbf E\xi_j\ne0$ belonging to the domain of attraction of the normal law.
The main result is the following relation:
$$
\mathbf E\{N_n\mid Q_n(x)\not\equiv0\}\sim\frac1\pi\ln n\quad(n\to\infty)
$$
where $Q_n(x)=\sum_{j=0}^n\xi_jx^j$ and $N_n$ is the number of real roots of $Q_n$.
@article{TVP_1971_16_3_a6,
author = {I. A. Ibragimov and N. B. Maslova},
title = {On the expected number of real zeros of random polynomials. {II.~Coefficients} with non-zero means},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {495--503},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a6/}
}
TY - JOUR AU - I. A. Ibragimov AU - N. B. Maslova TI - On the expected number of real zeros of random polynomials. II.~Coefficients with non-zero means JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1971 SP - 495 EP - 503 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a6/ LA - ru ID - TVP_1971_16_3_a6 ER -
%0 Journal Article %A I. A. Ibragimov %A N. B. Maslova %T On the expected number of real zeros of random polynomials. II.~Coefficients with non-zero means %J Teoriâ veroâtnostej i ee primeneniâ %D 1971 %P 495-503 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a6/ %G ru %F TVP_1971_16_3_a6
I. A. Ibragimov; N. B. Maslova. On the expected number of real zeros of random polynomials. II.~Coefficients with non-zero means. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 495-503. http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a6/