On the expected number of real zeros of random polynomials. II.~Coefficients with non-zero means
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 495-503

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_j$, $j=0,1\dots,$ be independent identically distributed random variables with $\mathbf E\xi_j\ne0$ belonging to the domain of attraction of the normal law. The main result is the following relation: $$ \mathbf E\{N_n\mid Q_n(x)\not\equiv0\}\sim\frac1\pi\ln n\quad(n\to\infty) $$ where $Q_n(x)=\sum_{j=0}^n\xi_jx^j$ and $N_n$ is the number of real roots of $Q_n$.
@article{TVP_1971_16_3_a6,
     author = {I. A. Ibragimov and N. B. Maslova},
     title = {On the expected number of real zeros of random polynomials. {II.~Coefficients} with non-zero means},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {495--503},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a6/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. B. Maslova
TI  - On the expected number of real zeros of random polynomials. II.~Coefficients with non-zero means
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1971
SP  - 495
EP  - 503
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a6/
LA  - ru
ID  - TVP_1971_16_3_a6
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. B. Maslova
%T On the expected number of real zeros of random polynomials. II.~Coefficients with non-zero means
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1971
%P 495-503
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a6/
%G ru
%F TVP_1971_16_3_a6
I. A. Ibragimov; N. B. Maslova. On the expected number of real zeros of random polynomials. II.~Coefficients with non-zero means. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 495-503. http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a6/