On some questions related to the joint distribution of functionally dependent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 541-548
Cet article a éte moissonné depuis la source Math-Net.Ru
Consider the random vector $([sf_0(\eta)]_{m_0},\dots,[sf_N(\eta)]_{m_N})$ where $\eta$ is a random variable uniformly distributed on the interval $[0,2\pi]$; $s>0$ is a parameter and $[A]_m$ is the integral part of the least positive residue of a number $A$ modulo $m$. In the present paper, some classes of functions $f_0,\dots,f_N$ are found for which the distribution of this vector converges as $s\to\infty$ to the uniform distribution on integral points of $(N+1)$-dimensional rectangular $$ \{x\in R^{N+1}\quad0\le x_i<m_i,\quad i=0,l,\dots,N\}. $$ Estimates of convergence rates are given.
@article{TVP_1971_16_3_a11,
author = {Z. N. Saltykova},
title = {On some questions related to the joint distribution of functionally dependent random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {541--548},
year = {1971},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a11/}
}
TY - JOUR AU - Z. N. Saltykova TI - On some questions related to the joint distribution of functionally dependent random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1971 SP - 541 EP - 548 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a11/ LA - ru ID - TVP_1971_16_3_a11 ER -
Z. N. Saltykova. On some questions related to the joint distribution of functionally dependent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 541-548. http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a11/