On asymptotic expansions in the central limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 535-540
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{X_k\}$ be a sequence of independent identically distributed random variables with $\mathbf EX_1=0$, $\mathbf EX_1^2=1$ and $\mathbf E|X_1|^{m+2}\infty$ for some integer $m\ge1$. Put
$$
S_n=\sum_{k=1}^nX_k,\quad F_n(x)=\mathbf P\{S_n\sqrt n\},\quad f(t)=\mathbf Ee^{itX_1}.
$$
Suppose that Cramér's condition (c): $\varlimsup\limits_{|t|\to\infty}|f(t)|1$ is satisfied. It is known that, in this case, $F_n(x)=G(x)+o(n^{-m/2})$ where
$$
G(x)=\Phi(x)+\frac{e^{-x^2/2}}{\sqrt{2\pi}}\sum_{k=1}^mQ_k(x)n^{-k/2},
$$
$\Phi(x)$ is the normal distribution function, $Q_k(x)$ is a polynomial whose coefficients depend only on the cumulants of $X_1$.
Theorem 1 contains a sufficient condition for convergence of the series
$$
\sum_{n=1}^\infty n^{-1+\frac{m+\delta}2}\sup_x|F_n(x)-G(x)|,\quad0\le\delta1.
$$ Theorem 2 indicates a necessary and sufficient condition for this convergence in the
special case of symmetric random variables.
@article{TVP_1971_16_3_a10,
author = {F. N. Galstyan},
title = {On asymptotic expansions in the central limit theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {535--540},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a10/}
}
F. N. Galstyan. On asymptotic expansions in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 535-540. http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a10/