Wanderings of a~Markov process
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 409-436

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X=(x_t,\zeta,M_t,\mathbf P_x)$ be a standard Markov process in a semi-compact $E$ and let $D$ be an open subset of the space $E$. The random set $\{t\colon x_t\in D\}$ consists of intervals $(\gamma,\delta)$ with the beginnings $\gamma$ of some of them. Wanderings of $X$ are the paths $\omega^\gamma$ in the space $D$ defined by the formula $w_t^\gamma=x_{\gamma+t}$ ($0$). For any left-continuous nonanticipating functional $F_t(\omega,w)$ ($t>0$, $\omega\in\Omega$, $w\in W$), we consider the sum of its values $F_\gamma(\omega,w^\gamma)$ over all wanderings of $X$ and we calculate the expectation of this sum in terms of an additive functional $\Phi$ of $X$ (the fundamental functional) and a kernel $b(x,\Gamma)$ (the entrance kernel). The main result is the formula of wanderings (1.8).
@article{TVP_1971_16_3_a0,
     author = {E. B. Dynkin},
     title = {Wanderings of {a~Markov} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {409--436},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a0/}
}
TY  - JOUR
AU  - E. B. Dynkin
TI  - Wanderings of a~Markov process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1971
SP  - 409
EP  - 436
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a0/
LA  - ru
ID  - TVP_1971_16_3_a0
ER  - 
%0 Journal Article
%A E. B. Dynkin
%T Wanderings of a~Markov process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1971
%P 409-436
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a0/
%G ru
%F TVP_1971_16_3_a0
E. B. Dynkin. Wanderings of a~Markov process. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 409-436. http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a0/