On asymptotic expansions for distribution functions of sums of independent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 328-338
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\{X_j\}$ be a sequence of independent identically distributed random variables with zero means and unit variances and let $F_n(x)$ be the distribution function of the sum $\frac1{\sqrt n}\sum_{j=1}^nX_j$. Asymptotic expansions of the function $F_n(x)$ are given which are more general than the classic expansion (0.1). We study also the asymptotic behaviour of the remainder in (0.1).
@article{TVP_1971_16_2_a9,
author = {L. V. Osipov},
title = {On asymptotic expansions for distribution functions of sums of independent random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {328--338},
year = {1971},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a9/}
}
L. V. Osipov. On asymptotic expansions for distribution functions of sums of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 328-338. http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a9/