Limit theorems in an occupancy problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 292-305 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There are $N$ cells into which particles are thrown independently of each other. Each particle falls into any fixed cell with probability $1/N$. Let $\nu_m(N,k)$ be the number of throwings after which $k$ cells will contain for the first time at least $m$ particles each. This paper deals with the study of asymptotic behaviour of $\nu_m(N,k)$ as $N\to\infty$ under different assumptions about parameters $k$ and $m$. Limit distributions of $\nu_m(N,k)$ ($N\to\infty$) are found in the case when $m\to\infty$, $m/ln N\le C<\infty$, and either $k=\operatorname{const}$ or $N-k=\operatorname{const}$, or $k/N=\operatorname{const}$.
@article{TVP_1971_16_2_a6,
     author = {G. I. Iv\v{c}enko},
     title = {Limit theorems in an occupancy problem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {292--305},
     year = {1971},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a6/}
}
TY  - JOUR
AU  - G. I. Ivčenko
TI  - Limit theorems in an occupancy problem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1971
SP  - 292
EP  - 305
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a6/
LA  - ru
ID  - TVP_1971_16_2_a6
ER  - 
%0 Journal Article
%A G. I. Ivčenko
%T Limit theorems in an occupancy problem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1971
%P 292-305
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a6/
%G ru
%F TVP_1971_16_2_a6
G. I. Ivčenko. Limit theorems in an occupancy problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 292-305. http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a6/