On the expected number of real zeros of random polynomials I. Coefficients with zero means
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 229-248
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\xi_j$, $j=0,1,\dots$, be independent identically distributed random variables with $\mathbf E\xi_j=0$ and belong to the domain of attraction of the normal law. The main result is: $$ \mathbf E\{N_n\mid Q_n(x)\not\equiv0\}\underset{n\to\infty}\sim\frac2\pi\ln n\quad\text{if }\mathbf P\{\xi_j\ne0\}>0 $$ where $Q_n(x)=\sum_{j=0}^n\xi_jx^j$, $N_n$ is the number of real roots of $Q_n$.
@article{TVP_1971_16_2_a2,
author = {I. A. Ibragimov},
title = {On the expected number of real zeros of random polynomials {I.~Coefficients} with zero means},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {229--248},
year = {1971},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a2/}
}
TY - JOUR AU - I. A. Ibragimov TI - On the expected number of real zeros of random polynomials I. Coefficients with zero means JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1971 SP - 229 EP - 248 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a2/ LA - ru ID - TVP_1971_16_2_a2 ER -
I. A. Ibragimov. On the expected number of real zeros of random polynomials I. Coefficients with zero means. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 229-248. http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a2/