On the expected number of real zeros of random polynomials I. Coefficients with zero means
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 229-248 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\xi_j$, $j=0,1,\dots$, be independent identically distributed random variables with $\mathbf E\xi_j=0$ and belong to the domain of attraction of the normal law. The main result is: $$ \mathbf E\{N_n\mid Q_n(x)\not\equiv0\}\underset{n\to\infty}\sim\frac2\pi\ln n\quad\text{if }\mathbf P\{\xi_j\ne0\}>0 $$ where $Q_n(x)=\sum_{j=0}^n\xi_jx^j$, $N_n$ is the number of real roots of $Q_n$.
@article{TVP_1971_16_2_a2,
     author = {I. A. Ibragimov},
     title = {On the expected number of real zeros of random polynomials {I.~Coefficients} with zero means},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {229--248},
     year = {1971},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a2/}
}
TY  - JOUR
AU  - I. A. Ibragimov
TI  - On the expected number of real zeros of random polynomials I. Coefficients with zero means
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1971
SP  - 229
EP  - 248
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a2/
LA  - ru
ID  - TVP_1971_16_2_a2
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%T On the expected number of real zeros of random polynomials I. Coefficients with zero means
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1971
%P 229-248
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a2/
%G ru
%F TVP_1971_16_2_a2
I. A. Ibragimov. On the expected number of real zeros of random polynomials I. Coefficients with zero means. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 229-248. http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a2/