On estimation of the mean and correlation function of a~stationary process from discrete data
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 367-369
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In [1], it is stated that there exists such a number $n$ that the variance of $m_n$ is less than that of $m_T$ where $m_n$ and $m_T$ are defined in (1) and (1$'$) respectively ($\xi(t)$ is a stationary process). 
In the present paper, thes assertion is proved to be wrong.
			
            
            
            
          
        
      @article{TVP_1971_16_2_a15,
     author = {Yu. M. Ry\v{z}ov},
     title = {On estimation of the mean and correlation function of a~stationary process from discrete data},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {367--369},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a15/}
}
                      
                      
                    TY - JOUR AU - Yu. M. Ryžov TI - On estimation of the mean and correlation function of a~stationary process from discrete data JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1971 SP - 367 EP - 369 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a15/ LA - ru ID - TVP_1971_16_2_a15 ER -
Yu. M. Ryžov. On estimation of the mean and correlation function of a~stationary process from discrete data. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 367-369. http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a15/
