Estimations in the theorem of the stability of Poisson distribution decompositions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 218-228
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\Pi_\lambda$ be a Poisson distribution function and $F=F_1*F_2$ a distribution function such that either in the Lévy metric or in the uniform metric $\rho(F,\Pi_\lambda)\le\varepsilon$.
We show that, there exists a Poisson distribution function $\Pi_{\lambda_1}$ such that
$$
\rho(F_1,\Pi_{\lambda_1})(\lambda)\sqrt{\frac{\ln(-\ln\varepsilon)}{(-\ln\varepsilon)}}.
$$
            
            
            
          
        
      @article{TVP_1971_16_2_a1,
     author = {J. J. Ma\v{c}ys},
     title = {Estimations in the theorem of the stability of {Poisson} distribution decompositions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {218--228},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a1/}
}
                      
                      
                    TY - JOUR AU - J. J. Mačys TI - Estimations in the theorem of the stability of Poisson distribution decompositions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1971 SP - 218 EP - 228 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a1/ LA - ru ID - TVP_1971_16_2_a1 ER -
J. J. Mačys. Estimations in the theorem of the stability of Poisson distribution decompositions. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 218-228. http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a1/
