On estimation of the remainder in the central limit theorem for sums of functions of independent random variables and sums of the form $\Sigma f(t2^k)$
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 1, pp. 108-116
Voir la notice de l'article provenant de la source Math-Net.Ru
The result of [2] is generalized to the case of sums of functions of independent identically distributed random variables. The dependence of the remainder on $x$ in the theorem of [1] concerning sums of the form $\Sigma f(t2^k)$ is also investigated. In proofs, limit theorems for differently distributed independent summands are used instead of the characteristic function method.
@article{TVP_1971_16_1_a7,
author = {V. I. Ladohin and D. A. Moskvin},
title = {On estimation of the remainder in the central limit theorem for sums of functions of independent random variables and sums of the form $\Sigma f(t2^k)$},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {108--116},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_1_a7/}
}
TY - JOUR AU - V. I. Ladohin AU - D. A. Moskvin TI - On estimation of the remainder in the central limit theorem for sums of functions of independent random variables and sums of the form $\Sigma f(t2^k)$ JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1971 SP - 108 EP - 116 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1971_16_1_a7/ LA - ru ID - TVP_1971_16_1_a7 ER -
%0 Journal Article %A V. I. Ladohin %A D. A. Moskvin %T On estimation of the remainder in the central limit theorem for sums of functions of independent random variables and sums of the form $\Sigma f(t2^k)$ %J Teoriâ veroâtnostej i ee primeneniâ %D 1971 %P 108-116 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1971_16_1_a7/ %G ru %F TVP_1971_16_1_a7
V. I. Ladohin; D. A. Moskvin. On estimation of the remainder in the central limit theorem for sums of functions of independent random variables and sums of the form $\Sigma f(t2^k)$. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 1, pp. 108-116. http://geodesic.mathdoc.fr/item/TVP_1971_16_1_a7/