A~limit theorem for a~characteristic of a~random Boolean matrix
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 1, pp. 83-92

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\|a_i^j,\ i=1,\dots,k,\ j=1,\dots,n\|$, $k=[n\theta]$, $0\theta1$, be a Boolean matrix with mutually independent random elements $a_i^j$: $$ \mathbf P\{a_i^j=1\}=\pi_i^j,\quad0\pi_i^j1. $$ We consider the minimum distance $\zeta$ of a random linear code with parity-check matrix $\|a_i^j\|$. Theorem 1. {\it Let all $\pi_i^j\in[\delta,1-\delta]$ where $\delta$ is a fixed positive number. Then {(3)} holds uniformly for $\pi_i^j\in[\delta,1-\delta]$ and for $t$ subject to} (1), (2). Theorem 2. (3) holds uniformly for $\pi_i^j\in[\delta_n,1-\delta_n]$ as $\delta_n\to0$, $\delta_nn/\ln n\to\infty$ and for $t$ subject to (4), (5).
@article{TVP_1971_16_1_a5,
     author = {M. V. Kozlov},
     title = {A~limit theorem for a~characteristic of a~random {Boolean} matrix},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {83--92},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_1_a5/}
}
TY  - JOUR
AU  - M. V. Kozlov
TI  - A~limit theorem for a~characteristic of a~random Boolean matrix
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1971
SP  - 83
EP  - 92
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1971_16_1_a5/
LA  - ru
ID  - TVP_1971_16_1_a5
ER  - 
%0 Journal Article
%A M. V. Kozlov
%T A~limit theorem for a~characteristic of a~random Boolean matrix
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1971
%P 83-92
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1971_16_1_a5/
%G ru
%F TVP_1971_16_1_a5
M. V. Kozlov. A~limit theorem for a~characteristic of a~random Boolean matrix. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 1, pp. 83-92. http://geodesic.mathdoc.fr/item/TVP_1971_16_1_a5/