A~limit theorem for a~characteristic of a~random Boolean matrix
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 1, pp. 83-92
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\|a_i^j,\ i=1,\dots,k,\ j=1,\dots,n\|$, $k=[n\theta]$, $0\theta1$, be a Boolean matrix with mutually independent random elements $a_i^j$:
$$
\mathbf P\{a_i^j=1\}=\pi_i^j,\quad0\pi_i^j1. 
$$ We consider the minimum distance $\zeta$ of a random linear code with parity-check matrix $\|a_i^j\|$.
Theorem 1. {\it Let all $\pi_i^j\in[\delta,1-\delta]$ where $\delta$ is a fixed positive number. Then {(3)} holds uniformly for $\pi_i^j\in[\delta,1-\delta]$ and for $t$ subject to} (1), (2).
Theorem 2. (3) holds uniformly for $\pi_i^j\in[\delta_n,1-\delta_n]$ as $\delta_n\to0$, $\delta_nn/\ln n\to\infty$ and for $t$ subject to (4), (5).
			
            
            
            
          
        
      @article{TVP_1971_16_1_a5,
     author = {M. V. Kozlov},
     title = {A~limit theorem for a~characteristic of a~random {Boolean} matrix},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {83--92},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_1_a5/}
}
                      
                      
                    M. V. Kozlov. A~limit theorem for a~characteristic of a~random Boolean matrix. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 1, pp. 83-92. http://geodesic.mathdoc.fr/item/TVP_1971_16_1_a5/
