A limit theorem for a characteristic of a random Boolean matrix
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 1, pp. 83-92
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\|a_i^j,\ i=1,\dots,k,\ j=1,\dots,n\|$, $k=[n\theta]$, $0<\theta<1$, be a Boolean matrix with mutually independent random elements $a_i^j$: $$ \mathbf P\{a_i^j=1\}=\pi_i^j,\quad0<\pi_i^j<1. $$ We consider the minimum distance $\zeta$ of a random linear code with parity-check matrix $\|a_i^j\|$. Theorem 1. {\it Let all $\pi_i^j\in[\delta,1-\delta]$ where $\delta$ is a fixed positive number. Then {(3)} holds uniformly for $\pi_i^j\in[\delta,1-\delta]$ and for $t$ subject to} (1), (2). Theorem 2. (3) holds uniformly for $\pi_i^j\in[\delta_n,1-\delta_n]$ as $\delta_n\to0$, $\delta_nn/\ln n\to\infty$ and for $t$ subject to (4), (5).
@article{TVP_1971_16_1_a5,
author = {M. V. Kozlov},
title = {A~limit theorem for a~characteristic of a~random {Boolean} matrix},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {83--92},
year = {1971},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_1_a5/}
}
M. V. Kozlov. A limit theorem for a characteristic of a random Boolean matrix. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 1, pp. 83-92. http://geodesic.mathdoc.fr/item/TVP_1971_16_1_a5/