Optimal stopped games
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 1, pp. 183-188
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let ($\Omega$, $\mathscr F$, $\mathbf P$) be the probability space, $\mathscr F_0\subseteq\mathscr F_1\subseteq\dots\subseteq\mathscr F_n\subseteq\dots\subseteq\mathscr F$ a nondecreasing sequence of $\sigma$-algebras. Let random variables $x_n$, $\varphi_n$ be $\mathscr F_n$-measurable ($n=0,1,\dots$).
The process may be stopped by the 1st player at the $n$th step if $\varphi_n>0$, and by the 2nd player if $\varphi_n0$. The 2nd player gets from the 1st one the sum $x_n$ provided the process is stopped on the $n$th step. The process where the role of $\varphi_n$ plays
$$
\varphi_n^L=
\begin{cases}
\varphi_n,\varphi_n>0,
\\
0,\varphi_\le0,
\end{cases}
$$
is called the minorizing process and the process where the role of $\varphi_n$ plays
$$
\varphi_n^M=
\begin{cases}
0,\varphi_\ge0,
\\
\varphi_n,\varphi_n0,
\end{cases}
$$
is called the majorizing process. We suppose that $\mathbf M(\sup\limits_n|x_n|)\infty$.
We prove that if there exists an optimal policy in the minorizing (majorizing) process, starting at the $n$th step, then the policy
\begin{gather*}
\sigma^k=\inf\{t\colon t\ge k,\quad\varphi_t>0,\quad x_t\le w_t\}\quad(\tau^k=\inf\{t\colon t\ge k,\quad\varphi_t0,\quad x_t\ge w_t\})
\\
(k=0,\dots,n)
\end{gather*}
is optimal for the first (second) player in the initial game starting at the $k$th step. (Here $w_t$ is the value of the initial game starting at the $t$th step. The existence of $w_t$ is proved in [1].)
			
            
            
            
          
        
      @article{TVP_1971_16_1_a17,
     author = {Yu. I. Kifer},
     title = {Optimal stopped games},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {183--188},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_1_a17/}
}
                      
                      
                    Yu. I. Kifer. Optimal stopped games. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 1, pp. 183-188. http://geodesic.mathdoc.fr/item/TVP_1971_16_1_a17/
