Sequential estimation of diffusion processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 4, pp. 705-717

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the sequential estimation problem for the unobservable component $\theta_t$ of a two-dimensional diffusion process $(\xi_t,\theta^t)$ satisfying (1) from the data $\xi_0^T$. By a method different to that of [1], [6], equations of optimal filtering and (forward) interpolation (Theorems 6 and 7) are obtained under essentially weaker conditions.
@article{TVP_1970_15_4_a7,
     author = {M. P. Ershov},
     title = {Sequential estimation of diffusion processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {705--717},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a7/}
}
TY  - JOUR
AU  - M. P. Ershov
TI  - Sequential estimation of diffusion processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1970
SP  - 705
EP  - 717
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a7/
LA  - ru
ID  - TVP_1970_15_4_a7
ER  - 
%0 Journal Article
%A M. P. Ershov
%T Sequential estimation of diffusion processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1970
%P 705-717
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a7/
%G ru
%F TVP_1970_15_4_a7
M. P. Ershov. Sequential estimation of diffusion processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 4, pp. 705-717. http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a7/