A~central limit theorem for semisimple Lie groups
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 4, pp. 685-705

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a connected semisimple noncompact Lie group with a finite centre, $g_1,g_2,\dots,g_m,\dots$ a sequence of random independent identically distributed elements of $G$ with probability distribution absolutely continuous with respect to the Haar measure on $G$. Denote by $g(m)$ the product $g_1g_2\dotsg_m$. Asymptotical behavior of the distribution of $g(m)$ as $m\to\infty$ is investigated. The analysis is based on the representation of $g(m)$ in the form $g(m)=x(m)\tilde a(m)k(m)$ where $x(m)$, $k(m)$ are random elements of a maximal compact subgroup of $G$ $\tilde a(m)$ is a random element of an Abelian subgroup of $G$. It is proved that the factors $x(m)$, $\tilde a(m)$, $k(m)$ are asymptotically independent (theorem 5) and asymptotical behavior of the probability distributions of all the factors is described (theorems 1,2,3,4).
@article{TVP_1970_15_4_a6,
     author = {A. D. Virtser},
     title = {A~central limit theorem for semisimple {Lie} groups},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {685--705},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a6/}
}
TY  - JOUR
AU  - A. D. Virtser
TI  - A~central limit theorem for semisimple Lie groups
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1970
SP  - 685
EP  - 705
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a6/
LA  - ru
ID  - TVP_1970_15_4_a6
ER  - 
%0 Journal Article
%A A. D. Virtser
%T A~central limit theorem for semisimple Lie groups
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1970
%P 685-705
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a6/
%G ru
%F TVP_1970_15_4_a6
A. D. Virtser. A~central limit theorem for semisimple Lie groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 4, pp. 685-705. http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a6/