On parametric hypotheses testing with nonparametric tests
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 4, pp. 745-749
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\xi_1,\dots,\xi_n$ be a sample with a theoretical distribution function s$F(t,\theta)$. Here $\theta$ is an unknown $r$-dimensional parameter. We consider the “regular” case when its maximum likelihood estimator $\theta^*$ has usual asymptotical properties. We denote the empirical distribution function by $F_n(t)$.
In this paper, limiting properties of $\sqrt n[F_n(t)-F(t,\theta^*)]$ are discussed. It is proved that $\lim\sqrt n[F_n(t)-F(t,\theta^*)]$ is a conditioned Gaussian process. After a natural change of the time variable $s=F(t,\theta^*)$ we obtain a conditioned Wiener process $v(s)$ on $[0,1]$ satisfying $r$ linear conditions
$$
\int_0^1m_i(s,\theta)\,dv(s)=0,\quad i=1,\dots,r,
$$
and $v(1)=0$. If $\theta$ is the location-scale parameter the conditions are free of $\theta$. A linear transformation $v\to\tilde v$ is constructed, where the Wiener process $\tilde v(s)$ satisfies $r+1$ conditions:
$$
\tilde v(0)=\tilde v(t_1)=\dots=\tilde v(t_r)=\tilde v(1)=0.
$$
Quantities $0$ can be chosen arbitrarily.
Now it is possible to use for the process $\tilde v$ such well-known goodness-of-fit tests as Kolmogorov's or Cramer–von Mises' ones.
			
            
            
            
          
        
      @article{TVP_1970_15_4_a14,
     author = {Yu. N. Tyurin},
     title = {On parametric hypotheses testing with nonparametric tests},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {745--749},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a14/}
}
                      
                      
                    Yu. N. Tyurin. On parametric hypotheses testing with nonparametric tests. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 4, pp. 745-749. http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a14/
