On parametric hypotheses testing with nonparametric tests
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 4, pp. 745-749
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\xi_1,\dots,\xi_n$ be a sample with a theoretical distribution function s$F(t,\theta)$. Here $\theta$ is an unknown $r$-dimensional parameter. We consider the “regular” case when its maximum likelihood estimator $\theta^*$ has usual asymptotical properties. We denote the empirical distribution function by $F_n(t)$. In this paper, limiting properties of $\sqrt n[F_n(t)-F(t,\theta^*)]$ are discussed. It is proved that $\lim\sqrt n[F_n(t)-F(t,\theta^*)]$ is a conditioned Gaussian process. After a natural change of the time variable $s=F(t,\theta^*)$ we obtain a conditioned Wiener process $v(s)$ on $[0,1]$ satisfying $r$ linear conditions $$ \int_0^1m_i(s,\theta)\,dv(s)=0,\quad i=1,\dots,r, $$ and $v(1)=0$. If $\theta$ is the location-scale parameter the conditions are free of $\theta$. A linear transformation $v\to\tilde v$ is constructed, where the Wiener process $\tilde v(s)$ satisfies $r+1$ conditions: $$ \tilde v(0)=\tilde v(t_1)=\dots=\tilde v(t_r)=\tilde v(1)=0. $$ Quantities $0 can be chosen arbitrarily. Now it is possible to use for the process $\tilde v$ such well-known goodness-of-fit tests as Kolmogorov's or Cramer–von Mises' ones.
@article{TVP_1970_15_4_a14,
author = {Yu. N. Tyurin},
title = {On parametric hypotheses testing with nonparametric tests},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {745--749},
year = {1970},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a14/}
}
Yu. N. Tyurin. On parametric hypotheses testing with nonparametric tests. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 4, pp. 745-749. http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a14/