Sequential filtering of components of a Markov chain in the case of singular diffusion matrix
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 4, pp. 736-740
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(\theta_n,\xi_n)$, $n=0,\Delta,\dots$ $(\Delta>0)$ be a $k+l$-dimensional Markov chain satisfying 1) where $\xi_n$ is the observable component and $\theta_n$ is the unobservable one. In this paper, we obtain the recurrent relations (2) for the conditional expectations and covariance matrix which define the optimal mean square estimates and errors. The results remain valid also in the case when the diffusion matrix is singular.
@article{TVP_1970_15_4_a12,
author = {O. A. Glonti},
title = {Sequential filtering of components of a {Markov} chain in the case of singular diffusion matrix},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {736--740},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a12/}
}
TY - JOUR AU - O. A. Glonti TI - Sequential filtering of components of a Markov chain in the case of singular diffusion matrix JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1970 SP - 736 EP - 740 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a12/ LA - ru ID - TVP_1970_15_4_a12 ER -
O. A. Glonti. Sequential filtering of components of a Markov chain in the case of singular diffusion matrix. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 4, pp. 736-740. http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a12/