Limit theorems for asymmetric random walk
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 4, pp. 731-736

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with an asymmetric random walk with transition probabilities $p_{k,k+1}=p$, $p_{k,k-1}=1-p=q$. Let $S_k$ be the location of the system at time $k$; $f(k)$ be a function determined for all integers $k$. For some class of functions $f$ the limit behavior as $p-q\to0$ of the functionals of the type $\sum_{k=0}^\infty f(S_k)$ is studied.
@article{TVP_1970_15_4_a11,
     author = {O. G. Miklukhin},
     title = {Limit theorems for asymmetric random walk},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {731--736},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a11/}
}
TY  - JOUR
AU  - O. G. Miklukhin
TI  - Limit theorems for asymmetric random walk
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1970
SP  - 731
EP  - 736
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a11/
LA  - ru
ID  - TVP_1970_15_4_a11
ER  - 
%0 Journal Article
%A O. G. Miklukhin
%T Limit theorems for asymmetric random walk
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1970
%P 731-736
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a11/
%G ru
%F TVP_1970_15_4_a11
O. G. Miklukhin. Limit theorems for asymmetric random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 4, pp. 731-736. http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a11/