On admissible translations of measures in Hilbert space
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 4, pp. 577-598
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mu$ be a measure on the $\sigma$-algebra $\mathfrak B$ of Borel sets of a separable Hilbert space $X$. An element $a\in X$ is called an admissible translation of $\mu$ if $\mu_a\ll\mu$ where $\mu_a$ is the measure obtained from $\mu$ under transformation of space $X\colon S_ax=x+a$. In the paper, the set $M_\mu$ of admissible translations of $\mu$ and the form of the density $d\mu_a/d\mu$ are investigated.
The class $\mathfrak M$ of measures for which $M_\mu$ contains the linear manifold dense in $X$ is studied. $\mathfrak M$ is shown to be a convex set. The set $\mathfrak K$ of extreme points of $\mathfrak M$ is found and it is proved that all the measures from $\mathfrak M$ are mixtures of those from $\mathfrak K$.
@article{TVP_1970_15_4_a0,
author = {A. V. Skorokhod},
title = {On admissible translations of measures in {Hilbert} space},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {577--598},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a0/}
}
A. V. Skorokhod. On admissible translations of measures in Hilbert space. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 4, pp. 577-598. http://geodesic.mathdoc.fr/item/TVP_1970_15_4_a0/