Note on Gaussian measures in a~Banach space
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 3, pp. 519-520

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mu$ be a Gaussian measure in a separable Banach space $X$. It is proved that for some $\alpha>0$ $$ \int e^{\alpha\|x\|}\mu(dx)\infty. $$
@article{TVP_1970_15_3_a6,
     author = {A. V. Skorokhod},
     title = {Note on {Gaussian} measures in {a~Banach} space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {519--520},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_3_a6/}
}
TY  - JOUR
AU  - A. V. Skorokhod
TI  - Note on Gaussian measures in a~Banach space
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1970
SP  - 519
EP  - 520
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1970_15_3_a6/
LA  - ru
ID  - TVP_1970_15_3_a6
ER  - 
%0 Journal Article
%A A. V. Skorokhod
%T Note on Gaussian measures in a~Banach space
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1970
%P 519-520
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1970_15_3_a6/
%G ru
%F TVP_1970_15_3_a6
A. V. Skorokhod. Note on Gaussian measures in a~Banach space. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 3, pp. 519-520. http://geodesic.mathdoc.fr/item/TVP_1970_15_3_a6/