Note on Gaussian measures in a~Banach space
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 3, pp. 519-520
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mu$ be a Gaussian measure in a separable Banach space $X$. It is proved that for some $\alpha>0$
$$
\int e^{\alpha\|x\|}\mu(dx)\infty.
$$
@article{TVP_1970_15_3_a6,
author = {A. V. Skorokhod},
title = {Note on {Gaussian} measures in {a~Banach} space},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {519--520},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_3_a6/}
}
A. V. Skorokhod. Note on Gaussian measures in a~Banach space. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 3, pp. 519-520. http://geodesic.mathdoc.fr/item/TVP_1970_15_3_a6/