On connection between two characteristics of dependence of Gaussian random vectors
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 304-309
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\xi$ and $\eta$ be Gaussian random vectors with distributions $\mathscr P_1(dx)$ and $\mathscr P_2(dy)$ respectvely, and with joint distribution $\mathscr P_{12}(dxdy)$. Let $I$ be the information about $\eta$, containing in $\xi$. Set $$ V=\operatorname{Var}(\mathscr P_{12}-\mathscr P_1\times\mathscr P_2). $$ In the paper connection between $I$ and $V$ is under investigation.
@article{TVP_1970_15_2_a9,
author = {I. A. Ibragimov and Yu. A. Rozanov},
title = {On connection between two characteristics of dependence of {Gaussian} random vectors},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {304--309},
year = {1970},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a9/}
}
TY - JOUR AU - I. A. Ibragimov AU - Yu. A. Rozanov TI - On connection between two characteristics of dependence of Gaussian random vectors JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1970 SP - 304 EP - 309 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a9/ LA - ru ID - TVP_1970_15_2_a9 ER -
I. A. Ibragimov; Yu. A. Rozanov. On connection between two characteristics of dependence of Gaussian random vectors. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 304-309. http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a9/